


including the extent to which their connectedness depends on a few

neighborhood hubs, and the fact that in several cities, contact between some

neighborhoods is all but nonexistent. We also show that cities with greater

population densities, more cosmopolitanism, and less racial segregation have

higher levels of structural connectedness. Our indices can be applied to data

at any spatial scale, and our measures pave the way for more powerful and

precise analyses of structural connectedness and its effects across a broad

array of social phenomena.
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Social integration has always been important to sociological research. The

extent to which societies are integrated has concerned thinkers as varied as

Durkheim ([1893] 1984, [1897] 1966), Toqueville ([1835] 2000), and Tön-

nies ([1887] 1957) as well as contemporary researchers such as Blau (1977)

and Fischer (1982, 2011). Socially integrated societies are expected to

experience greater solidarity, trust, pro-social behavior, longevity, and

well-being, as well as lower violence, conflict, and crime (Angell 1947;

Putnam 2000). In recent decades, researchers have examined how inte-

grated cities are based on how segregated their neighborhoods are by race

or income (Lichter, Parisi, and Taquino 2015; Logan, Stults, and Farley

2004; Reardon and Bischoff 2011). This approach reflects the important

point that social integration depends not only on how attached people feel

to the collective but also, and more importantly, on how much interaction

different groups have with one another (Blau 1977, 1994; Blau and

Schwartz 1997).

Nevertheless, this research faces an important limitation. Social interac-

tion requires groups to come into contact (Blau 1977), and to the extent that

different groups lack opportunities to come into contact, they will have

difficulty integrating socially (Moody 2001; Mouw and Entwisle 2006).

Traditional measures of segregation assume, reasonably, that people are less

likely to come into contact if they live in different neighborhoods (e.g.,

Logan et al. 2004; Massey and Denton 1993; Reardon and Bischoff 2011).

For example, Reardon and O’Sullivan (2004:122) apply this assumption by

conceptualizing segregation as “the extent to which individuals of different
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groups occupy or experience different social environments” (see also Wilson

[1987] 2012).

Yet, living in different neighborhoods is not synonymous with experien-

cing different social environments. Over the course of their everyday lives,

people can, and do, leave their residential neighborhoods; they travel through-

out the city for work and leisure, creating multiple opportunities for contact

with those in other neighborhoods and experiencing other social environments,

local communities, and cultural practices (Browning, Calder, Krivo, et al.

2017; Krivo et al. 2013; Small 2004; Wikström et al. 2010). In addition, people

have opportunities to interact with nonlocal residents who visit their neighbor-

hood. As a result, residents of different neighborhoods may be more or less

connected as a function of their own as well as others’ everyday geographic

movements. Although this movement between neighborhoods is essential to

cities’ social integration, the connectedness created by mobility has been

largely ignored by scholars, due in part to data limitations.

Fortunately, rich, fine-grained data at large scales are increasingly avail-

able (Akhavan et al. 2019) to measure people’s geographic movements as an

important part of social integration. This article takes those movements

seriously. Drawing on Blau (1977, 1994), Blau and Schwartz (1997), and

others, we posit that (a) opportunities for contact are essential to a city’s

social integration and (b) they depend on people’s quotidian mobility pat-

terns across its neighborhoods. We propose that a city’s structural connect-

edness is the extent to which its neighborhoods are tied to one another by the

movement of their residents, and we conceive of the city as a network in

which neighborhoods are vertices and residents’ travels between neighbor-

hoods are edges (Sampson 2012:309-28). We develop two measures of cit-

ies’ structural connectedness: one based on the degree to which

neighborhoods visit each of the others in equal proportion, what we call the

“equitable mobility index” (EMI); the other based on the extent to which

travels are concentrated in a handful of receiving neighborhoods, what we

call the “concentrated mobility index” (CMI). As we discuss below, these

measures capture unique and important aspects of the structural connected-

ness of the city, which, to our knowledge, have not been previously con-

ceptualized at this level of refinement. Thus, this article contributes to the

theoretical understanding of social integration based on a perspective

wherein residents’ everyday mobility patterns are central.

Our measures are also general and can be applied to any data sets that

capture patterns of geographic mobility such as data based on social media

posts, cell phone movement, or GPS tracking. We illustrate the value of our

new measures by applying them to a data set of 650 million geocoded tweets
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sent by 1.3 million Twitter users over 18 months, building on a recent

approach to estimating social isolation (Wang et al. 2018a). We uncover

important new features of U.S. cities and provide the tools for researchers

to apply our measures to other data sets, other cities, and other levels of

aggregation.

Conceptualizing Structural Connectedness

Our article combines a geographic mobility-based approach to cities’ inte-

gration with a growing literature that examines the connectedness between

neighborhoods from a network perspective (Browning, Calder, Stoller, et al.

2017; Hipp and Boessen 2017; Neal 2012; Papachristos and Bastomski 2018;

Sampson 2012). Although analyses of mobility patterns have increased rap-

idly with the emergence of large data sets that contain geographic informa-

tion, these studies frequently focus on patterns among individuals rather than

between neighborhoods (Barthelemy 2016; Gabrielli et al. 2014; Jiang et al.

2016; Jurdak et al. 2015; Wang et al. 2018a). Prior research at levels higher

than the individual has typically examined travel between rather than within

cities (Lenormand et al. 2015) or focused on travel within a city exclusively

between home and work (Graif, Lungeanu, and Yettera 2017; Louail et al.

2015). Studies that have examined travel patterns between areal units within

cities generally use larger boundaries and small numbers of cities (Bora,

Chang, and Maheswaran 2014; Shelton, Poorthuis, and Zook 2015; Zhong

et al. 2014). By contrast, we examine neighborhood (i.e., block group) con-

nectedness within cities.

Understanding the structural connectedness of cities is important for sev-

eral reasons. First, the greater the movement of people between two neigh-

borhoods, the more one can expect social ties to form across them. The

formation and existence of such ties are important for several outcomes.

Sampson (2012) found that in Chicago, when households relocated to dif-

ferent neighborhoods, they moved not just to places that were nearby but also

to places in which residents likely had prior social connections. Between-

neighborhood contact plays a role in understanding how people make

movement decisions even in the midst of core social processes, such as

gentrification, or major policy interventions, such as the demolition of hous-

ing projects or the Moving to Opportunity experiments (Sampson 2008).

Research on crime in Chicago has also found that people commit crimes

regularly with co-offenders who live not necessarily in nearby neighbor-

hoods but in those that are socially connected (Papachristos and Bastomski

2018; see also Graif et al. 2017). The formation of such ties allows for
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information to travel between neighborhoods, an important issue for theories

positing that the lack of access to information about jobs is a consequence of

neighborhood poverty (Wilson [1987] 2012; but see Wang et al. 2018a).

Second, the greater the movement of people between two neighborhoods,

the more one can expect diffusion across them, separate from the formation

of social ties. Important forms of diffusion do not require people in different

neighborhoods to know one another. One is disease. Many diseases, such as

influenza, depend on physical contact or merely proximity, and the extent of

contact between neighborhoods is related to the ease with which diseases of

this kind travel between them (Balcan et al. 2009; Colizza et al. 2007).

Another is cultural diffusion, as manifested in tastes, fashion, values, atti-

tudes, and cultural practices (Small, Harding, and Lamont 2010). Cultural

practices, such as the acceptance of openly gay couples or of interracial

marriages, are displayed publicly in neighborhood sidewalks, cafés, parks,

and other public places (Brown-Saracino 2017; Ghaziani 2014), and the

extent to which people travel between two neighborhoods will shape the

extent to which the cultural practices travel as well. Similarly, contacts in

one’s “activity spaces,” or the places visited on a regular basis, can predict

social values and mores (Browning, Calder, Stoller, et al. 2017).

Third, such interneighborhood connections shape the movement of ideas,

information, attitudes, beliefs, and practices about the city as a whole. Con-

ceiving of the city as a network of neighborhoods with greater or lesser

movement across them creates the possibility of understanding a vast array

of larger scale questions: Whether ideas, information, cultural practices, and

even diseases are likely to spread faster in some cities than others; how much

cities depend on the presence of neighborhood hubs or “hot spots,” such as

Grand Central Terminal in New York City or Grant Park in Chicago, for their

residents to come in contact with one another; how much the traditional

obstacles to integration, such as racial or income residential segregation, are

likely to limit the formation of social networks and the building of commu-

nity in a city; how successful cities are likely to be in countering isolation

with interventions that incentivize residents to leave their neighborhoods;

and many more. In short, adequately measuring what we call cities’

“structural connectedness” allows an understanding of integration that is at

once far deeper, much subtler, and substantially more powerful.

Measurement Strategies

Connectedness has been conceived and measured in numerous ways. Well-

man (1979) proposes that a community’s connectedness can be understood
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from a network perspective as a function of the structure of ties in the

community. Although his analysis focuses on ties between individuals within

two cities, his approach proves instructive, since it points to the useful-

ness of network measures to capture integration (see also Fischer 1982).

Sampson (2012:309-28) measures connectivity as the ties between neigh-

borhoods, focusing on both a neighborhood’s outdegree (moves out of

the neighborhood) and indegree (moves into the neighborhood). Outde-

gree and indegree are classic measures of network structure that can be

thought of as “expansiveness” and “popularity,” respectively, though

their interpretation depends on the particular network’s context (Wasser-

man and Faust 1994).

Some of the most important nonnetwork measures of connectedness to

date measure the opposite of integration: segregation, specifically resi-

dential segregation. Measures of residential segregation reflect a long

body of theoretical and empirical research on what segregation means

and how best to measure it (e.g., Duncan and Duncan 1955; James and

Taeuber 1985; Massey and Denton 1988; Reardon and Bischoff 2011;

Reardon and Firebaugh 2002). In their seminal article, Massey and Den-

ton (1988) propose five dimensions of residential segregation: evenness,

exposure, concentration, centralization, and clustering. They note that

evenness and exposure account for a large share of the variance among

a host of segregation measures.

We develop network indicators of structural connectedness that bear a

resemblance to Massey and Denton’s (1988) measures of evenness and con-

centration but that are nonetheless distinct. Specifically, we conceive of

structural connectedness as the extent to which neighborhoods in a city are

tied to one another by the travel of residents across neighborhoods, where

travel creates the opportunity for social contact. We do not presume that

opportunities for contact guarantee contact—only that the absence of these

opportunities precludes it. In this sense, structural connectedness may be

thought of as an essential precursor to macrosocial integration in a city (see

also Blau 1977). Moreover, although (static) residential segregation likely

influences (dynamic) macrosocial integration (or the lack thereof), our mea-

sures are based on mobility patterns between neighborhoods to account for

the broader, lived experiences of residents beyond the boundaries of their

residential neighborhood.

We note that the meaning of the term “structure” is subfield-specific. In

the networks literature, the term is widely understood to refer to the number

of vertices and nature of edges in a network; in the urban sociology literature,

the term has diverse applications that range from urban policies, institutional
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quality, and physical boundaries to economic and educational opportunities.

Here, we embrace the network conceptualization and refer to structural con-

nectedness as the extent to which neighborhoods are tied by flows of people

between them—independent of spatial proximity and institutional, social, or

economic similarity. Our conceptualization and measurement of connected-

ness is distinct from Krackhardt’s (1994), which quantifies connectedness as

the reachability between entities in a network.

Defining Network Measures

Networks consist of vertices (entities of a similar type) and edges, which

indicate a relation between two vertices (Wasserman and Faust 1994). A

network’s edges can be binary (representing the presence or absence of a

relation) or valued (representing the frequency or proportion of a relation).

Additionally, the edges can express undirected relations, such as marriage

(which are symmetric between the vertices), or directed relations, such as

international exports (which flow from one vertex to the other). The move-

ment between neighborhoods is best represented via valued, directed net-

works because (a) the frequency or proportion of all travels from one

neighborhood to another is more meaningful than whether any resident from

one neighborhood visited another and (b) visits between two neighborhoods

are not necessarily reciprocated (Balcan et al. 2009; Colizza et al. 2007).

Whereas individuals’ movement patterns constitute the connections between

neighborhoods, the separate visits can be aggregated to construct edge

weights between two neighborhoods, either as the frequency of visits or the

proportion of visits sent from one neighborhood. As a proportion, the edge

weights indicate the proclivity of a neighborhood’s residents to visit a par-

ticular neighborhood relative to all other neighborhoods. This approach illu-

minates the overall structure, or the consistent patterns in the relationships, of

a city’s mobility network.

Our first measure of cities’ structural connectedness quantifies the con-

centration of visits between neighborhoods by calculating the Gini coeffi-

cient of neighborhoods’ indegree centrality. Degree centrality quantifies the

prominence of vertices in a network based on their edges (connections) to all

other vertices; additionally, the dispersion and variance of a network’s

degree distribution represents heterogeneity or inequality in vertices’ degree.

In a directed network, vertices’ degree can be separated into their indegree

and outdegree. The former is the sum of all edges sent to a vertex; the latter is

the sum of all edges sent by a vertex. For a directed, weighted network,

indegree and outdegree centralities are typically found by summing the
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weighted edges (Newman 2001).1 For a directed network N: ¼ (V, E, W),

such that V is the set of all vertices, E is the set of edges, and W is the

weighted adjacency matrix, the indegree centrality of each vertex is calcu-

lated using equation (1):

CW
D ðiÞ ¼

X

Vn

i

wi; j ; i 6¼ j: ð1Þ

Given our interest in interneighborhood ties, equation (1) stipulates that

i 6¼ j because the network does not contain loops (edges from a vertex to

itself). Networks’ degree distributions depend on the size of the network.

Therefore, the distributions should be normalized. For example, the variance

of the distribution can be divided by the maximum possible variance to

generate a dimensionless index or the distribution can be assessed using

Freeman’s (1978) formula for graph centralization that produces values

bound between 0 and 1 (Snijders 1981; Wasserman and Faust 1994). These

procedures create values that are comparable across networks of different

sizes, which is important, given that cities vary in their numbers of

neighborhoods.

Gini coefficients, which are frequently used in social stratification

research, measure dispersion in distributions and generate values bound

between 0 (maximum equality) and 1 (maximum inequality). We derive our

CMI by calculating the Gini coefficients of neighborhoods’ indegree cen-

tralities for each city’s network. CMI values approaching 1 denote high

levels of concentration in visits between neighborhoods; in other words, a

few neighborhoods receive a much larger proportion of all possible visits

relative to the other neighborhoods. Inversely, CMI values closer to 0 denote

less concentrated shares of visits across a city’s neighborhoods. Figure 1

illustrates three example mobility networks along with their adjacency

matrices to demonstrate the utility and shortcoming of the measure.

All of the mobility networks contain six neighborhoods (vertices) that

have outdegree centralities of 1. Panel A displays an even connectedness

network, panel B a maximum uneven connectedness, and panel C a hub

connectedness network. In panels A and B, the neighborhoods have indegree

centralities of 1, but the two differ greatly despite having identical indegree

and outdegree distributions. In the even connectedness network (panel A),

each neighborhood’s visits are evenly distributed across all other neighbor-

hoods, but in the maximum uneven connectedness network (panel B), each

neighborhood visits only one other neighborhood. Despite the clear disparity

between their structures, the CMI, centralization index, and normalized
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variance all equal 0. The hub connectedness network (panel C) depicts a

hypothetical mobility network, such that neighborhoods send more than

half of their visits to neighborhood “a”; we refer to this as hub connected-

ness since one neighborhood has a much greater indegree centrality rela-

tive to the others.2 Its CMI is 0.58. The CMI (as well as indegree

centrality) can illuminate when one (or a few) neighborhood(s) is dispro-

portionately visited or when it receives a higher concentration of visits

relative to all other neighborhoods in a city. Yet, the measure poorly

quantifies a city’s equitableness or the extent to which neighborhoods are

connected in equal proportion to each other. This motivates the develop-

ment of our second measure.

The CMI, or nodes’ indegree centralities, reduces the adjacency matrix to

a vector, which can obfuscate important differences between networks’

structures even if they have identical degree distributions (see panels A and

B of Figure 1). Accounting for differences in the adjacency matrices requires

comparing the matrices element-wise to preserve the second dimension.

Figure 2 illustrates the utility of examining the elements of the adjacency

matrices compared to the indegree centralities. Using the same networks

from Figure 1, the top row shows the cumulative frequency distributions

Figure 1. Example networks of connectedness. (A) Even connectedness. (B) Maxi-
mum uneven connectedness. (C) Hub connectedness.
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of neighborhoods’ indegree centralities normalized by the maximum inde-

gree for each mobility network, and the bottom row shows the cumulative

frequency distributions of the elements in each adjacency matrix (i.e., visits

between neighborhoods or edge values). The black circles are scaled by the

number of observations for each value.

In the top row, panels A and B show identical indegree distributions. All

vertices have an indegree equal to 1, and their CMI (Gini coefficients) equal

0. The distribution for the hub connectedness network (panel C) shows a

skewed indegree distribution, such that five of the neighborhoods have inde-

gree centralities that are less than 20 percent of the highest indegree. The

distributions of edge values, however, exhibit marked contrasts from the

indegree distributions. Panel A on the bottom row displays an even distri-

bution of visits between neighborhoods since all of the values are the same;

all 30 edges equal 0.2. In contrast, the distribution of edge values in panel B

is highly uneven with 24 edges equal to 0 and 6 equal to 1. In panel C, the

distribution of edge values is less skewed than the indegree distribution; 13 of
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Figure 2. Cumulative frequency distributions of example networks’ indegree and
edge values. (A) Even connectedness. (B) Maximum uneven connectedness. (C) Hub
connectedness.
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the edges equal 0, but 7 equal the evenness values (0.2), while the right tail is

shorter than in panel B.

Taken together, the cumulative frequency distributions of indegree and

edge values underscore the importance of accounting for the edge weights

to assess structural connectedness. Despite having identical indegree dis-

tributions, the even connectedness and maximum uneven connectedness

networks differ substantially, which is shown in the bottom row. Addition-

ally, the distribution of edge values is less skewed than the distribution of

indegree centralities for the hub connectedness networks, even though the

max indegree is highest for this network. The CMI better identifies the

degree of concentration in neighborhoods’ total visits received, but it omits

important information regarding the equity in the neighborhoods’ visits to

each other. Our second index illuminates the latter more effectively. Both

are important for understanding cities’ mobility-based structural connect-

edness, though we believe that examining visits between neighborhoods

(the elements of an adjacency matrix) yields greater insights into mobility

networks’ structures overall.

We use Hamming distance to measure equality in visits between pairs of

neighborhoods in each city’s mobility network and construct our second

measure of cities’ structural connectedness: the Equitable Mobility Index

(EMI). Hamming distance is the absolute value of the element-wise differ-

ences between two adjacency matrices of the same size; put another way, it is

the sum of the edge changes (deletions and additions) necessary to make two

networks of the same size identical (Butts and Carley 2005; Hamming 1950).

The formula for calculating Hamming distance appears in equation (2):

X

i
X

jjW i;j
A � W

i;j
B j ; i 6¼ j: ð2Þ

Keeping with the previous notation, W is the weighted adjacency matrix

for networks A and B, respectively; i and j are vertices in the adjacency

matrices. As mobility networks,W contains the proportions of visits between

neighborhoods (i and j) in hypothetical cities A and B.

Intuitively, if the adjacency matrices are identical, then the Hamming

distance equals 0. Returning to Figure 1, the Hamming distance between the

mobility networks in panels A and B is 9.6 since 0.8 needs to be removed

from each element in adjacency matrix B that equals 1 and redistributed

equally across the off-diagonal elements in the same row (i.e., each of the

four elements add 0.2). This creates a Hamming distance of 1.6 for each row,

and there are six rows. The Hamming distance between networks A and C is

5.6, and it is 8.4 between B and C.
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The Hamming distance between the even connectedness network (panel

A) and the maximum uneven connectedness network (panel B) quantifies the

maximum observable Hamming distance between a mobility network and

the even connectedness network. We leverage this quantity to create our EMI

measure. Hamming distance requires two networks of equal size, so we

compare each city’s mobility-based network to the even connectedness net-

work of the same size. The even connectedness network has a value of 1
N�1

in

all of the off-diagonal elements of its adjacency matrix, where N is the

number of neighborhoods; put another way, each neighborhood visits all

other neighborhoods in equal proportion.

The Hamming distance quantifies how much the observed mobility net-

work would have to be altered to become the even connectedness network;

we define this as HDObs. Similar to Freeman’s (1978) seminal centralization

index, we then divide HDObs by the maximum possible Hamming distance

(HDMax) for a network of that size to facilitate comparisons across cities of

different sizes. The formula for the latter value is given in equation (3):

HDMax ¼
2N�ðN � 2Þ

N � 1
: ð3Þ

If each neighborhood only visits one other neighborhood, then the city’s

mobility network is the maximum distance from the even connectedness

network. To make the maximum uneven connectedness network identical

to the even connectedness network, all but 1
N�1

of each neighborhood’s out-

going visits must be redistributed to (N � 2) neighborhoods in order to

evenly distribute the visits across all possible neighborhoods. The numerator

is multiplied by 2N because each neighborhood’s visits needs to be sub-

tracted from the neighborhood that previously received all of the visits from

a neighborhood and added to all of the other neighborhoods. Using these

values, we calculate the EMI using equation (4):

EMI ¼ 1�
HDObs

HDMax

: ð4Þ

Dividing the observed Hamming distance by the maximum Hamming

distance bounds the values between 0 and 1. Subtracting this quotient from

1 generates an index, such that EMI values closer to 0 are less even and

values closer to 1 are more even.3 Similar to the denominator in Freeman’s

centralization index, the maximum Hamming distance is influenced by the

size of the network (Anderson, Butts, and Carley 1999; Butts 2006).4 This

aspect is inconsequential, though, since we scale observed values by the
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theoretical maximum value for the network given its size. Thus, both EMI

and CMI indicate the proportion of the observable value out of the maximum

possible value.

In sum, the CMI illuminates when a neighborhood receives a dispropor-

tionate concentration of visits, whereas the EMI quantifies how much

observed mobility networks would need to be altered to have the mobility

patterns evenly distributed across neighborhoods. Together, the measures

elucidate the structural connectedness of mobility networks and can be used

to compare sets of networks. Importantly, the methods delineated above are

applicable to any mobility data with fine-grained temporal and spatial reso-

lution; they can also be applied at different geographic scales.

Measurement Assumptions

Any attempt at measuring connectedness on a large scale requires simplify-

ing assumptions to make the analyses tractable. Our first assumption is that

each resident of a city is equally important for a neighborhood’s contact with

other neighborhoods. Practically, to create our edge lists, we normalize each

observed resident to have an outdegree of one by dividing their visits to all

other neighborhoods by their total numbers of visits outside of their residen-

tial neighborhoods. This step makes each resident’s visits to a neighborhood

a proportion of their total visits.

Second, we assume that each neighborhood has equal importance in the

structural connectedness of a city. Accordingly, we normalize each neigh-

borhood to have an outdegree of 1 by dividing its residents’ aggregated

proportions of visits to other neighborhoods by the sending neighborhood’s

total number of residents. The normalization aligns with our focus on a city’s

structural connectedness at the neighborhood level.5

Third, we assume that travelers to a city play a different and less impor-

tant role than residents in the structural connectedness of a city, as we

define it. Accordingly, we remove travelers from the calculation of CMI

and EMI. This decision aligns with prior work on residential segregation,

which focuses on the population of individuals whose primary residence is

within the location under analysis. Hence, this assumption allows us to

make a stronger link between our connectedness measures and static seg-

regation measures.

Our final assumption is that equitable connectedness within a city would

result from all neighborhoods having equivalent values for their outdegree to,

and indegree from, all other neighborhoods. Stated another way, where

neighborhoods’ residents equally visit and are visited by all other
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neighborhoods’ residents. This assumption may be problematic if some visits

are transitory and yield little interaction. Yet, exposure and the potential for

interaction are important in their own right (Blau 1977, 1994; Moody 2001;

Mouw and Entwisle 2006). At a minimum, visiting another neighborhood, no

matter how fleeting, is a precondition for exposure. Our aim is to directly

measure this type of exposure.

Estimating Everyday Geographic Mobility: An

Application

Thus far, we have used fictitious, purposefully small mobility networks to

demonstrate how we derive our measures. Constructing mobility-based mea-

sures of neighborhood connectedness for multiple cities requires large-scale

geographical information on individuals’ residential locations and movement

patterns over an extended period of time. Although conceptually straightfor-

ward, few data sources meet these requirements. Twitter, however, provides

high-resolution data on when and where micromessages, tweets, are sent by

users that opt in to Twitter’s geotagging service; this includes the latitude

and longitude for a tweet to a fraction of a second (Luo et al. 2016; Sutton

et al. 2015). We use the same corpus of tweets as Wang et al. (2018a),

which comprises over 650 million geotagged tweets sent over 18 months by

1.3 million Twitter users (from October 1, 2013, to March 31, 2015) in the

areas surrounding the 50 largest cities of the United States.6 The spatial

granularity and temporal scale of the data provide a high level of detail

regarding where people move within the cities over 500 days. Below and in

the Appendix (which can be found at http://smr.sagepub.com/supplemental/),

we present further details on the reliability and validity of Twitter data for

present purposes.

Procedures

To construct cities’ mobility networks, we need urban residents’ estimated

home locations and the neighborhoods they visit. Wang et al. (2018a) used

machine learning to estimate individuals’ residential block groups from the

latitude and longitude provided by Twitter for publicly available, geotagged

tweets. We, too, use the density-based spatial clustering of applications with

noise (DBSCAN*) algorithm because it deterministically identifies clusters,

enables user-specified minimum cluster sizes as well as distances between

points comprising a cluster, and efficiently handles large data sets (Birant

and Kut 2007; Campello, Moulavi, and Sander 2013). Although geotagged
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tweets provide high geographic resolution, noise caused by device factors or

weather can affect the precision of the location. DBSCAN* ameliorates this

potential precision issue by comparing the distances between points and then

classifying points as part of a cluster or as noise based on the user-specified

parameters. We use the DBSCAN package in R with the specifications that

clusters (a) contain at least three data points (tweets), such that (b) each point

is no more than 0.0004 degrees (approximately 56 meters) apart from two

other points within the cluster (Hahsler and Piekenbrock 2017). Points that

do not meet both criteria are classified as noise (or outliers) and are not part

of any cluster; this includes border points, which makes the algorithm fully

deterministic (Luo et al. 2016; Soliman et al. 2015).7

For each city, we collect all tweets within boundaries larger than the city,

so that we can properly distinguish between suburban residents that regularly

commute to a city, tourists, and urban residents. The larger areas are bound-

ing boxes that extend beyond cities’ commuting zones according to the U.S.

Department of Agriculture Economic Research Service (Parker 2012). To

identify individuals’ home locations, we use the subset of their tweets that are

sent between 8 p.m. and 12 a.m. local time on Monday through Thursday,

assuming that most individuals send most of their tweets from their residence

during this time (see also Jiang et al. 2016). Then, we apply DBSCAN* to all

locations within this subset to identify clusters.8 Next, we find the centroid of

the largest cluster (based on the number of points) and assign that centroid as

the individual’s approximate home location. If an individual has more than

one cluster equal to the maximum cluster size, then we assign their home

cluster based primarily on the length of time between the first and last tweet

in the cluster and secondarily on the geographic compactness of the cluster.

After each individual is assigned a single home cluster, the centroid of the

cluster is spatially joined with its block group using PostgreSQL v9.3 and

PostGIS 2.4.7.9 This process provides precision in estimated locations at the

block group level, hence restricting the ability to pinpoint an individual’s

home address (for further details, see Wang et al. [2018a:7736 and SI]).

The procedure estimates individuals’ residential block groups in ways that

improve upon previous research. Yet, these steps do not adequately address

the presence of travelers to a city, who have divergent mobility patterns from

residents (Gabrielli et al. 2014). We remove these travelers from a city’s data

for two reasons. First, the 50 cities experience different rates of tourism, so

the effects would be heterogeneous across the cities. Second, this aligns with

prior work on residential segregation, which focuses on the population of

individuals whose primary residence is within the location of analysis. To

identify the residents of a city, we remove individuals who have less than
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30 days between their first and last tweet within a city. If an individual has

home clusters in multiple cities, we then compare the number of tweets they

sent during the home period (8 p.m. to 12 a.m. from Monday through Thurs-

day) and the number of days between their first and last tweet in each of the

cities. We then assign individuals to only one city based on these character-

istics. After all individuals have only one home location, we retain individ-

uals whose home block groups are inside the city boundaries of the 50 most

populous cities. These additional data processing steps increase our confi-

dence that we have more accurate estimates of individuals’ home block

groups than previous research using geotagged tweets (Jiang, Li, and Ye

2018; Malik et al. 2015).

Our procedures generate a data set for each city comprising individuals

with estimated residences in cities’ block groups and each time they uniquely

visited (tweeted from) any block group in the city. The data set contains

133,766,610 geotagged tweets sent by 375,504 individuals. As described

above, to control for differences between individuals’ tweeting rates, we

divide individuals’ numbers of visits (tweets) to any block group in the city

by the number of tweets each individual sent, excluding tweets sent in their

home block group. For each block group, we find the mean proportions of

visits to all other block groups by summing residents’ proportions to visited

block groups and dividing each sum by the number of residents (Twitter

users in our sample) in the block group. This yields a data set of normalized

visits from each block group to all other block groups within a city with

values bound between 0 and 1. These data are valued edge lists, which we use

to construct each city’s directed, weighted network, whose size equals the

number of block groups. Each edge indicates the proportion of visits from

one block group to another.

Data Assumptions

Our use of Twitter-based mobility data requires additional assumptions

beyond those general to our measures. First, we assume that Twitter data

may be used to make valid inferences about interneighborhood mobility.

This assumption requires addressing three potential sources of bias: Twitter

users may not be representative of the population; individuals who geotag

their tweets may not be representative of Twitter users or the population;

and geotagged tweets may not be representative of travels between neigh-

borhoods. As we discuss in the Appendix (which can be found at http://

smr.sagepub.com/supplemental/), the third of these, which ultimately

encompasses the first two, is the core threat to our inferences, since it
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pertains to general travel patterns in cities rather than individuals’ travel

patterns. In the Appendix (which can be found at http://smr.sagepub.com/

supplemental/), we review existing studies that address the issue by com-

paring mobility patterns derived from Twitter data with those derived from

other data sources such as travel diaries and commuting patterns. The

comparison studies suggest that Twitter data are appropriate for making

our inferences.

Second, we assume that individuals send geotagged tweets evenly during

their daily activities. If individuals tweet more frequently from particular

areas or when engaging in particular activities, then this could bias our

estimates of their mobility patterns. We use the same corpus of tweets as

Wang et al. (2018a), and their results for individuals’ travel distances and

interactions across demographic groups aligned with prior work using GPS,

cell phone data, and travel diaries (Jones and Pebley 2014; Krivo et al. 2013;

Palmer et al. 2013).

We also conducted two empirical tests of these assumptions. In the most

extensive, we apply our method to an alternative data source based on cell

phone GPS signals for millions of users in Houston, and we successfully

replicate a key finding reported below. We discuss this replication study in

greater depth in the Appendix (which can be found at http://smr.sagepub

.com/supplemental/). These consistent findings across multiple types of data

lend credence to our use of geotagged tweets to study geographic mobility.

To assess whether or not individuals would selectively enable and disable

the geotagging service, thereby undermining representativeness, we ran-

domly selected 5,000 individuals who sent at least one geotagged tweet from

June 9 to June 15, 2018. Using the streaming application programming inter-

face from Twitter, we followed these users for about a one-month period

(June 17 to July 19, 2018) and collected all of their tweets. We found that all

tweets from these users were geotagged during this period.10 Thus, we are

quite confident that the vast majority of individuals who geotag their tweets

do not alternate between geotagging and not geotagging their tweets.

Finally, along with these Twitter-specific assumptions, our general

assumptions for the measures have some implications in the context of

geotagged Twitter data. Regarding our first methodological assumption

(individual-level normalization), we assume that individuals’ propensities

to tweet outside of their neighborhoods are unrelated to their levels of

mobility. In other words, we believe that individuals’ mobility patterns are

more equal than their tweeting patterns. Not making this assumption would

imply that people who tweet more travel more and that the two have a linear

relationship. The notion that the number of tweets an individual sends is a
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linear function of their mobility is clearly dubious. Failure to normalize and

treat individuals equally would dramatically overweight individuals that

more frequently tweet.11 Regarding the second general assumption

(neighborhood-level normalization), neighborhoods exhibit sizable varia-

tion in numbers of observed Twitter accounts. This difference might reflect

variation in population across neighborhoods to some extent, but the cor-

relation between neighborhoods’ populations and numbers of Twitter users

is modest (0.48). These two normalizations are necessary to generate com-

parable, unbiased mobility networks. Again, we stress that our main con-

tribution is the development of connectedness measures; geotagged tweets

are merely the application.

Results

Our first measure of structural connectedness, the CMI, quantifies the dis-

proportionate concentration of visits to a few neighborhoods within a city.

Cities’ CMIs range from 0.415 (Miami) to 0.585 (San Diego), indicating

that visits from residents of other neighborhoods are most concentrated in

a small share of neighborhoods in San Diego. The mean and median

values are 0.506 and 0.505, respectively. Additionally, the distribution

is quite compact with 38 of the values lying within one standard devia-

tion of the mean. Our second measure of structural connectedness, the

EMI, quantifies how closely neighborhoods’ mobility patterns in a city

approximate a scenario in which each neighborhood visits all other

neighborhoods in equal proportion. Cities’ EMIs range from 0.048 (New

York City) to 0.226 (Raleigh), with mobility patterns being more evenly

distributed in the latter. The mean and median values are 0.137 and

0.142, respectively. The distribution of cities’ EMIs is also quite compact

with 35 of the cities’ values lying within one standard deviation of

the mean.

The correlation between EMI and CMI is only �0.033, revealing that the

two measures, indeed, capture distinct aspects of the structural connected-

ness of the cities’ mobility networks. Each city’s EMI and CMI values appear

in Figure 3. Larger cities tend to have smaller EMI values, which is expected

because it is more difficult for residents of larger cities to visit all neighbor-

hoods (and unlikely they would do so in equal proportions), especially those

that are further away from their residential neighborhoods. In contrast, cities’

CMI values do not evince as strong of a relationship with size. Although

many of the cities are in the center of the plot, four cities stand out based on

their EMI and CMI values: New York City, San Francisco, Detroit, and
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Miami. New York City has the lowest EMI value and the seventh highest

CMI value. San Francisco has the second highest CMI value but the fourth

highest EMI value. Detroit has the seventh lowest EMI value but the second

lowest CMI value. Miami has the lowest CMI value and the seventh highest

EMI value. Their positions outside of the central cluster of cities bear further

scrutiny, and we delve deeper into the structures of these cities’ mobility

networks to deduce what factors might drive these differences.

In Figure 4, we show neighborhoods’ indegree colored by their values in

these four cities. The neighborhoods are colored from low (dark blue) to high

(dark red) indegree, and black indicates neighborhoods with indegree cen-

tralities greater than 5. The spatial clustering of low and high indegree

neighborhoods is immediately apparent in all four panels. Yet, noticeable

differences across the cities are clear. The heat maps for New York and San

Francisco contain more compact clusters of similar degree values than

Detroit and Miami. Furthermore, the numbers and spatial distributions of

hubs (neighborhoods with indegree centralities greater than 5) are discern-

ible. In New York City and San Francisco, 2.3 percent and 2.1 percent of all

neighborhoods are hubs, whereas only 1.4 percent and 1.5 percent of neigh-

borhoods are hubs in Detroit and Miami. Conversely, 16.3 percent and 20.9

percent of neighborhoods in New York City and San Francisco have indegree

values below 0.25 compared to 9.9 percent and 4.9 percent of neighborhoods

Figure 3. Relationship between cities’ equitable and concentrated mobility indices.
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in Detroit and Miami. The index of concentrated mobility captures these

differences.

For New York, there is a concentration of high indegree values and hubs

in Manhattan, and there is greater heterogeneity in Brooklyn and Queens.

The neighborhood with the highest indegree (49.5) contains Penn Station.

Hubs are present across the city, but the bulk of them are in Manhattan. This

pattern indicates a polycentric urban form where multiple hubs exist

(Zhong et al. 2014). In San Francisco, Outer Sunset and Sunset District

show a higher concentration of low indegree values. Conversely, the Finan-

cial District and Telegraph Hill show the greatest concentration of high

Figure 4. Heat maps of neighborhoods’ indegree in four cities. (A) New York. (B)
San Francisco. (C) Detroit. (D) Miami. Four block groups in San Francisco that border
the water are excluded from map B because the city’s shape file for them includes
water extending across the bay. They are included in the analyses, however. We
retain the Presidio and Golden Gate Bridge block group in the map, the large black
hub in the northwest part of the city.
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indegree values, and the neighborhood with the highest indegree value

(24.1) is the Mission Street area near the Financial District. The hubs are

highly concentrated in the downtown area with other neighborhoods that

also have indegree centralities that exceed the threshold of equality, sug-

gesting a monocentric urban form. Two additional hubs are surrounded by

neighborhoods with low indegree centralities. In these two cities, the fig-

ures clearly illustrate that certain areas receive a substantially higher con-

centration of visits than other neighborhoods, which is why their CMI

values are among the highest.

Detroit evinces greater spatial heterogeneity in neighborhoods’ indegree.

The downtown area displays a greater concentration of neighborhoods with

high indegree values, whereas the neighborhoods east of downtown illus-

trate a concentration of low indegree values. However, Brightmoor and

Warrendale (to the west of downtown) contain neighborhoods with hetero-

geneous indegree values. In Detroit, the most visited neighborhoods are

primarily located downtown with three additional areas of concentration on

the outskirts of the city. Similar to Detroit, Miami’s downtown area has a

high concentration of neighborhoods with high indegree value, and the

neighborhood with the highest indegree (7.1) is in the middle of downtown.

Also similar to Detroit, Miami’s neighborhoods display less similarity for

indegree values to their proximate neighborhoods compared to New York

City and San Francisco. The overall lack of indegree similarity for nearby

neighborhoods reveals that several neighborhoods receive more visits than

their surrounding neighborhoods, such that hubs are not spatially

compact.12

The neighborhoods visited most frequently in the four cities also provide

face validity to our data. As we would expect, the downtown areas illustrate

higher indegree values overall, and the neighborhoods most visited are sen-

sible and reflect our ground truth for these cities. Similarly, we found the

neighborhood most visited in Los Angeles contains the Staples Center and

Pershing Square, and a neighborhood in the Northwest inner loop is most

visited in Chicago. These consistent patterns with high face validity increase

our confidence in Twitter as a data source for measuring mobility. Moreover,

nearly all of the 38,505 neighborhoods in the 50 cities are visited at least once

by another neighborhood, a substantially better coverage rate than could be

achieved using travel diaries or surveys.

We further assess the differences in neighborhoods’ indegree in these four

cities with cumulative frequency distributions. These are shown in Figure 5,

and each neighborhood’s indegree is divided by the maximum indegree in

the city, so that the distributions are on the same scale. In each city’s plot, the
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vertical, gray line indicates the indegree value for equal visits in a city; the

horizontal line indicates the percentage of neighborhoods falling below this

threshold. The distributions for New York City and San Francisco rise much

more rapidly than the distributions for Detroit and, especially, Miami. Addi-

tionally, in New York City and San Francisco, 76.1 percent and 75.9 percent

of neighborhoods, respectively, are below the equitable visits threshold com-

pared to 68.9 percent in Detroit and 69.8 percent in Miami. The shape of the
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Figure 5. Cumulative distributions of proportional indegree in four cities. (A) New
York City. (B) San Francisco. (C) Detroit. (D) Miami.
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distributions for the first two elucidates why they have higher CMI values;

a large majority of the neighborhoods in these cities receive far fewer visits

than the most visited neighborhoods. In other words, New York City and San

Francisco have more concentrated mobility networks. In contrast, the dis-

tributions for Detroit and Miami increase more gradually. Detroit and Miami

have less concentrated distributions of visits across neighborhoods; hence,

they have lower CMI values.

As shown in Figures 1 and 2, however, this lower concentration does not

necessarily entail equitability in the overall exposure of residents from

different neighborhoods to each other. Figure 6 shows the cumulative fre-

quency distributions of the weighted edges (i.e., the elements of the adja-

cency matrices) for the four cities. The enlarged black circles reflect the

(large) percentages of edges that equal 0. New York City still has a sharp

increase and a long tail, but now Detroit’s distribution takes this shape as

well. The large number of zeros indicates a lack of connectedness in both

cities where many neighborhoods are not visiting each other. Taken

together with Figure 5, this means that a few neighborhoods receive a

disproportionate share of visits in New York City, and many neighborhoods

do not visit each other at all. For Detroit, the low CMI and EMI values

indicate that the mobility network is cleaved, such that residents of the city

neither travel to the same neighborhoods en masse nor do they travel to

many of the neighborhoods in the city overall. Essentially, not only are

Detroit neighborhoods disconnected, but they also lack an area where many

of their residents come together. The combination of our measures there-

fore reveals distinct insights about the nature of a city’s structural integra-

tion based on mobility.

The distributions for San Francisco and Miami have fewer zeros and

increase more gradually, though the distribution for San Francisco does

have more weight in its upper tail. For these two cities, residents visit a

relatively larger share of the cities’ neighborhoods. Taking into account

Figure 5, a small number of neighborhoods in San Francisco receive a

large share of residents’ visits, but the remaining share of each neighbor-

hood’s residents’ visits is distributed fairly equitably across neighbor-

hoods. For Miami, neighborhoods’ residents visit many of the

neighborhoods in the city with few neighborhoods visited at exceptionally

high rates. In other words, Miami’s CMI and EMI indicate a high level of

connectedness compared to other cities, as residents are highly exposed to

one another.
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Predictors of Connectedness

To better understand what features of cities correspond to their levels of

connectedness, we estimate variation in the EMI across the 50 cities using

ordinary least squares regression models. Space constraints preclude us from

properly discussing the predictors involved in understanding our two sepa-

rate outcomes. For this reason, we focus only on the EMI, which is a more

comprehensive measure of a city’s structural integration.13 At the end of this

section, we also discuss the general pattern of results we obtained for CMI.
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Figure 6. Cumulative distributions of edge values in four cities. (A) New York City.
(B) San Francisco. (C) Detroit. (D) Miami.
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Our EMI estimates include a parsimonious set of predictors reflecting

core sociological theories of social integration. Social scientists have long

argued that the demographic and spatial characteristics of cities affect the

character of their interactions. Foremost, cities with large populations and

land mass will likely evince less connectedness, as the likelihood for inter-

action between any two neighborhoods is structurally more difficult (Blau

1977, 1994) and a large metropolis can be overwhelming (Simmel 1950).

Relatedly, cities that are larger in land area may experience lower connect-

edness, as distance increases the time costs to travel between neighborhoods.

Public transit may obviate some of these costs and facilitate interneighbor-

hood flows. We measure public transit as the percentage of adult workers

who use public transit to commute to work using data from the 2011–2015

American Community Survey (ACS).

We also include several measures of the cities’ social characteristics based

on 2011–2015 ACS data. Merton (1968) argued that cosmopolitans are

highly likely to exhibit an extralocal orientation and view themselves as key

components in the outside world. In the context of large urban cities and their

neighborhoods, we expect that more cosmopolitan cities will have neighbor-

hoods with greater connectedness to each other. We measure cosmopolitan-

ism as the percentage of adults with a bachelor’s degree. Blau (1977)

theorizes that diversity increases the likelihood of intergroup contact. Still,

diversity may not lead to neighborhood connectedness, as individuals often

exhibit preferences for racial and ethnic homophily (McPherson, Smith-

Lovin, and Cook 2001; Wang et al. 2018a). Indeed, social trust and solidarity

tend to be lower in ethnically diverse neighborhoods (Putnam 2007). We

measure diversity using Blau’s diversity index, which is calculated as one

minus the Herfindahl Index (see equation [5]).14

B ¼ 1�
X

P2
r : ð5Þ

Finally, racial and income segregation may spatially and socially cleave

cities, thereby reducing connectedness. Although segregation may counter-

act the tendency to “hunker down” that Putnam (2007) observes in diverse

neighborhoods, it may also yield the pernicious consequence that city resi-

dents are less likely to visit a wide range of neighborhoods. We calculate a

Theil index of multigroup racial segregation as:

Hrace ¼
1

E

X

R

r¼1

pr

X

J

j�1

tj

T
pjrlnðpjrÞ; ð6Þ
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where pr is the proportion of individuals in racial/ethnic group r in the

city, tj is the total count of individuals in neighborhood j, T is the total count

of individuals in the city, pjr ¼ pjr=pr, and E ¼
PR

r¼1prln
1
pr

� �

.15

Finally, we calculate residential segregation by income using the

block-group-specific household counts across the 16 income ranges included

in the ACS.16 Given the ordinal nature of this variable, we use Reardon and

Bischoff’s (2011) preferred rank ordered information theory (Theil) index to

calculate income segregation.

EðiÞ ¼ i� ln
1

i

� �

þ ð1� iÞ � ln
1

1� i

� �

; ð7Þ

HðiÞ ¼ 1�
X

J

j¼1

tjEjðiÞ

TEðiÞ
; ð8Þ

Hincome ¼ 2� lnð2Þ

Z

1

0

EðiÞHðiÞdi: ð9Þ

At any given value of income i, E(i) is the entropy of the population

divided into groups above and below the income threshold, H(i) is the tra-

ditional information theory (Theil) index, and Hincome is a weighted average

of income segregation across the distribution. Reardon and Bischoff (2011)

provide further information on calculating this index.

Our regression models are not causal estimates. Rather, our intent is to

provide a description of predictive patterns based on externally derived

measures emphasized in urban theory, even though our statistical power is

limited with a sample size of 50 cases. Summary statistics of the variables

appear in Table 1. Table 2 presents the regression results.

Model 1 estimates cities’ EMI values based on these theoretically relevant

covariates. As Blau and Simmel predict, more populous cities show signifi-

cantly less connectedness. This relationship is not, however, a function of land

area, which is unrelated to connectedness. Further, public transit seems to

contribute little to evenness in neighborhood ties. Two social features of cities

also emerge as salient predictors of connectedness. As Merton theorized, cos-

mopolitan cities show greater structural integration of neighborhoods. On the

other hand, cities that aremore residentially segregated by race demonstrate less

connectedness. Diversity and income segregation are unrelated to EMI.
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Model 2 investigates the amount of variance in cities’ connectedness

levels that is explained by basic demographics: population and land area.

These variables explain 58 percent of the variance, and population accounts

for nearly all of this. Adding measures of racial segregation and cosmopo-

litanism in model 3 explains an additional 12 percent of the variance. In sum,

cities’ populations and social characteristics explain a large share of the

variation in their neighborhoods’ connectedness levels. The pattern of these

relationships aligns with long-standing sociological theories regarding inter-

actions and integration in cities and countries.17

Table 1. Summary Statistics.

Mean Standard Deviation Minimum Maximum

Equitable mobility index 0.137 .038 0.048 0.226
Ln(population) 13.64 .634 12.902 15.955
Ln(land area) 5.785 .981 3.771 8.032
Percent public transita 0.094 .122 0.006 0.596
Percent bachelor’sb 0.341 .097 0.147 0.581
Theil race 0.288 .092 0.141 0.499
Theil income 0.16 .023 0.114 0.212
Blau heterogeneity 0.603 .091 0.348 0.766

aCalculated using workers not working from home.
bCalculated using individuals age 25 or older.

Table 2. Ordinary Least Squares Models of Equitable Mobility Index.

Model 1 Model 2 Model 3

Ln(population) �0.0447*** (0.0078) �0.0465*** (0.0059) �0.0435*** (0.0057)
Ln(land area) 0.0028 (0.0055) 0.0012 (0.0038) 0.0014 (0.0042)
Percent public
transit

0.0407 (0.0464)

Percent bachelor’s 0.1047* (0.0393) 0.1082** (0.0365)
Theil race �0.1013* (0.0476) �0.0742y (0.0429)
Theil income 0.1723 (0.1543)
Blau heterogeneity �0.0283 (0.0395)
Constant 0.7103*** (0.0844) 0.7649*** (0.0775) 0.7067*** (0.0678)
N 50 50 50
R2 0.721 0.583 0.707
BIC �218.1 �217.6 �227.4

Note: BIC ¼ Bayesian information criterion.
***p � .001. **p � .01. *p � .05. yp � .1.
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Extensions and Implications

In this article, we build on a sociological canon highlighting the importance

of social integration (Blau 1977; Durkheim [1893] 1984, [1897] 1966), as

well as a recent set of studies analyzing neighborhood connectedness from a

networks perspective (Browning, Calder, Stoller, et al. 2017; Graif et al.

2017; Papachristos and Bastomski 2018; Sampson 2012), by developing

measures of structural connectedness that identify the equitability and con-

centration of residents’ visits between a city’s neighborhoods. Our measures

are applicable at any areal scale and with any data set containing movement

data. Although we believe that the EMI offers a more comprehensive assess-

ment of connectedness, the CMI can supplement the other measure by indi-

cating that neighborhoods are disproportionately visited in a city.

Connectedness as a phenomenon is related, though conceptually distinct,

from residential segregation by race or income. Although segregation can be

thought of, broadly, as the extent to which individuals both reside in and

experience different social spaces (Reardon and O’Sullivan 2004), research

on residential segregation investigates the former almost exclusively and

neglects exposure from or to outside neighborhoods. The focus on static

measures of residential segregation stems in large part from a lack of avail-

able data on individuals’ day-to-day mobility patterns for a large number of

places and cities. Thus, while sociological research on residential segregation

is impressively long running and empirically rich (Du Bois 1899; Duncan

and Duncan 1955; James and Taeuber 1985; Lichter et al. 2015; Logan et al.

2004; Massey and Denton 1988; Massey and Denton 1993; Reardon and

Bischoff 2011; Reardon and Firebaugh 2002), research on connectedness

is much more limited. The general measures we develop, and subsequently

apply to Twitter data, contribute to this fallow research area.18

We demonstrate the utility of our measures using a data set of approxi-

mately 650 million geotagged tweets that were sent in the nation’s 50 largest

cities. We uncover differences in the equitability and concentration of visits

between neighborhoods in these cities, which has implications for social

capital and cohesion, as well as the diffusion of culture, ideas, information,

crime, diseases, and other social outcomes. Future research analyzing varia-

tion in neighborhood outcomes between or within cities should consider the

role of residents’ movements across neighborhoods. For example, recent

research demonstrates that dynamic population changes of a neighborhood

each day are much more important for its odds of experiencing a crime than

static residential population counts (Boivin and Felson 2018). Moreover, the

demographic and economic characteristics of individuals physically located
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in a neighborhood may vary quite dramatically throughout the day (Le Roux,

Vallée, and Commenges 2017; Vallée 2018). These temporal fluctuations in

cities’ connectedness and exposure should be accounted for, when the data

facilitate it (Wang et al. 2018b), and our measures could be further applied to

mobility patterns during different times of the day.

Interestingly, we find that a city’s demographic characteristics are

important predictors of its levels of connectedness. In line with classic

structuralist theory (e.g., Blau 1977; Simmel 1950), more populous cities

are less structurally connected. Population size can account for over half of

the variance in cities’ levels of neighborhood connectedness. In addition,

cities that are more cosmopolitan and less racially segregated tend to be

more structurally connected. Whether racial segregation might lead to less

neighborhood connectedness or neighborhood connectivity might reduce

racial segregation is worthy of further exploration. Again, this analysis was

descriptive and does not support causal conclusions. Nevertheless, the

strong relationship between several theoretically relevant characteristics

of a city and its level of social integration provides confidence in our

measure of neighborhood connectedness.

Moving forward, we envision research that examines additional network

properties, such as clique membership based on demographic attributes of

block groups. Additionally, research could identify the presence and spatial

distribution of hubs across cities or use community detection algorithms to

assess another dimension of cities’ structural connectedness (Zhong et al.

2014). The network data could be further analyzed using exponential fam-

ily random graph models to illuminate the generative mechanisms that

produce the observed mobility networks and then distinguish which char-

acteristics of cities create similarities or differences between the networks

(Handcock et al. 2008; Hunter et al. 2008). Conceptualizing urban mobility

patterns as networks opens a host of research possibilities that we hope

other scholars will pursue.

Conclusion

We have developed two indices of structural connectedness that quantify

theoretically important, yet currently unmeasured, features of cities’ social

integration. We illustrated the value of these indices using Twitter data.

Importantly, our measures do not depend on the use of these particular data;

in the future, data from cell phones or other sources may generate better or

larger samples for assessing neighborhood connectedness. Our indices can

quantify structural connectedness with any mobility data that have sufficient
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coverage and resolution, such as GPS signals from cell phones, census com-

muting patterns, or public transit “tap-in” data. Applied to these data, the

indices can further illuminate the structural connectedness of cities or other

geographical areas, such as metropolitan statistical areas. Another aspect of

our methods and measurements is that they can be applied to different geo-

graphic boundaries and at different geographic scales. In the age of big data,

we are at an important moment to broaden our understanding of social

integration to include a range of measures that reflect not just the places

people live but also the spaces they experience together.
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Notes

1. The number of vertices connected as well as edges’ weights can be taken into

account with a tuning parameter, but what value the parameter should be is not

well defined (Opsahl, Agneessens, and Skvoretz 2010).

2. We are defining hubs as neighborhoods that receive a disproportionately large

share of visits (i.e., significantly larger indegree centralities). Others have defined

hubs in scale-free networks by assessing the degree centralities relative to a
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power law distribution (Barabási and Bonabeau 2003) or based on vertices’

degree and betweenness centralities (Butts, Petrescu-Prahova, and Cross 2007).

3. This transformation is similar to Blau’s (1977) calculation of the ethnic hetero-

geneity index by subtracting the value of the Herfindahl index from 1.

4. For example, directed star networks with one additional edge have indegree

centralization values of 0.9375, 0.9877, and 0.9999 for networks of sizes 5, 10,

and 100, respectively. Analogously, the values of HDObs

HDMax
for networks of sizes 5,

10, and 100 (where all but one neighborhoods send all of their visits to one

neighborhood; the one neighborhood visits all others equally) are 0.8, 0.9, and

0.99, respectively. The smallest city in our analyses has 250 neighborhoods and

has a value of 0.996, while the largest city has 6,220 neighborhoods and a value

of 0.9998. It is unsurprising that the maximum distance is greater for larger

networks because it is inherently more difficult for residents of each neighbor-

hood to visit all other neighborhoods in larger cities.

5. This assumption may be undesirable for particular outcomes such as flu epi-

demics. Since neighborhoods have different population sizes, they could poten-

tially have different saliences for a city’s structural connectedness. Although

differences in neighborhood size could be accounted for with census data—as

differential weighting of residents could be accomplished based on time in or

visits to other neighborhoods, as well as salient demographic characteristics

available with the individual-level data—we do not recommend this strategy

unless one is confident they have spatially stratified samples and strong theore-

tical motivations to weight differently. One could easily remove this normal-

ization when constructing the mobility edge lists. A city’s concentrated mobility

index (CMI) would still be calculated in the same way, but the equitable mobility

index (EMI) would need to account for differences in neighborhoods’ outdegree.

This could be done by row-wise adjusting the adjacency matrices for the even

connectedness and maximum uneven connectedness networks before calculating

the Hamming distances. For even connectedness, each neighborhood’s outdegree

would still be divided by the N � 1. For uneven, each vertex’s outdegree would

be multiplied by the numerator of equation (3), but the first term would only be 2

rather than 2N, since the Hamming distance is being calculated row-wise. The

sum of these products is the HDMax. This flexibility furthers the measure’s utility.

6. Wang et al. (2018a) investigate whether residents of minority or impoverished

neighborhoods experience social isolation—an inherently individual-level ques-

tion. To do this, they analyze how individuals’ distances traveled, numbers of

neighborhoods visited, and types of neighborhoods visited in a city vary based on

the demographics of their home neighborhood. In contrast, we study social

integration of cities based on the connectedness between their neighborhoods

Phillips et al. 31



and the equity of visits across their neighborhoods. Our substantive interest here

is in the city neighborhood networks—not individual-level mobility patterns.

7. Border points are within the specified minimum distance of points from two

different clusters but are not within that distance for the specified minimum

number of points. As a result, the point could be assigned to either cluster based

on the ordering of the data, which makes the algorithm nondeterministic. This

would affect our estimates of individuals’ home locations.

8. Each tweet represents a unique visit to a location by a user. Still, Twitter (2017)

enables users to automatically post tweets. If a user posts more than one tweet at

the same time and location, then we regard all but one of the tweets as duplicates.

We must cull these tweets because, otherwise, each tweet would no longer

indicate a unique visit, and our counts of individuals’ mobility patterns that

automatically post tweets would suffer reporting bias. Moreover, this would

affect our ability to estimate these individuals’ home block groups. Additionally,

we remove accounts if more than 10 percent of all their tweets, or 25 percent of

their home period tweets, are duplicates. This step also addresses the potential

issue of bots that geotag their tweets.

9. The commuting zones boundaries are based on counties’ boundaries. The bound-

aries of the cities are from the “places” shapefiles in the “Places” data. The

“block groups” shapefiles are provided by 2010 Census Data. We overlaid the

shapefiles for the block groups and city boundaries, and any block groups that

were within or overlapping with a city’s boundaries were treated as being in that

city. We removed block groups that had populations under 300 based on data

from the 2011–2015 American Community Survey.

10. Of the 5,000 sampled users, 4,842 sent tweets during the period of observation,

leaving 158 users who did not send tweets. We thank the anonymous reviewer for

suggesting this validation check.

11. In our data, the most prolific individuals tweet 1,000 times more than individuals

at the low end of the distribution. The correlation between the number of neigh-

borhoods visited and tweets sent by individuals in our analyzed data set is modest

at .54. Analyses of mobility using other social media or cell phone data, partic-

ularly if aggregated to areal units, also make a similar assumption.

12. For Detroit and Miami, the urban form is less structured outside of downtown,

but the heterogeneity in neighborhoods’ indegree, coupled with the relative lack

of hubs, does not indicate a polycentric form similar to New York City. Rather,

they have disproportionately visited downtown areas with more diffuse visits

dispersed throughout the cities, which is why they have lower CMI values.

13. CMI compares the distribution of visits to neighborhoods to determine whether a

city’s visits are spread evenly across neighborhoods or concentrated in a small

share of neighborhoods. EMI, on the other hand, compares the sending and
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receiving of visits for each neighborhood with all other neighborhoods in a city

against an equitable network; in this sense, it captures the average extent to which

any neighborhood in a city is connected to all other neighborhoods.

14. We measure diversity using eight racial and ethnic groups: whites, blacks, His-

panics, Asians, American Indians or Alaskan Natives, Native Hawaiians or Other

Pacific Islanders. The correlation between the eight-category measure and a

five-category (white, black, Hispanic, Asian, other) measure is 0.99.

15. We use an eight-category measure. Its correlation with a five-category measure is

0.99.

16. Income cut points for the categories are (in thousands of dollars) as follows: 10,

15, 20, 25, 30, 35, 40, 45, 50, 60, 75, 100, 125, 150, and 200 plus.

17. In a regression of CMI with the same predictors included in model 1, CMI is

positively associated with the share of adults with bachelor’s degrees and nega-

tively associated with racial residential segregation. Both associations are statis-

tically significant at the p < .05 level. CMI is not significantly related to our other

predictors, although population has a positive coefficient and approaches statis-

tical significance. The model explains 65.4 percent of the cross-city variance in

CMI. A model including only population, residential segregation, and share of

adults with bachelor’s degrees as predictors explains 64.3 percent of the variance.

All three variables are significant at the p < .01 level with coefficients substan-

tively similar to those in the full model.

18. Our measures for the 50 cities are available in the online Appendix Table A1.

References

Akhavan, Armin, Nolan Edward Phillips, Jing Du, Jiayu Chen, Bita Sadeghinasr, and

Qi Wang. 2019. “Accessibility Inequality in Houston.” IEEE Sensors Letters 3(1):

1-4.

Anderson, Brigham S., Carter Butts, and Kathleen Carley. 1999. “The Interaction of

Size and Density with Graph-level Indices.” Social Networks 21:239-67.

Angell, Robert C. 1947. “The Social Integration of American Cities of More than

100,000 Population.” American Sociological Review 12:335-42.

Balcan, Duygu, Vittoria Colizza, Bruno Gonçalves, Hao Hu, José J. Ramasco, and
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